Warning
This is an unofficial archive of PsychonautWiki as of 2025-08-11T15:14:44Z. Content on this page may be outdated, incomplete, or inaccurate. Please refer to the original page for the most up-to-date information.

Pethidine

From PsychonautWiki Archive
Revision as of 06:52, 23 April 2017 by >The Pharmer (Grammatics)
Jump to navigation Jump to search

Fatal overdose may occur when opiates are combined with other depressants such as benzodiazepines, barbiturates, gabapentinoids, thienodiazepines, alcohol or other GABAergic substances.[1]

It is strongly discouraged to combine these substances, particularly in common to heavy doses.

Template:Proofread
Pethidine
Chemical Nomenclature
Common names Pethidine, Meperidine, Demerol, Dolantin, Dolcontral
Systematic name Ethyl 1-methyl-4-phenylpiperidine-4-carboxylate
Class Membership
Psychoactive class Opioid
Chemical class Phenylpiperidine
Routes of Administration

WARNING: Always start with lower doses due to differences between individual body weight, tolerance, metabolism, and personal sensitivity. See responsible use section.



Oral
Dosage
Bioavailability 50-60%
Threshold 25 - 50 mg
Light 50 - 100 mg
Common 100 - 200 mg
Strong 200 - 400 mg
Heavy 400 mg +
Duration
Onset 30 - 60 minutes
Peak 4 - 6 hours
After effects 2 - 10 hours









DISCLAIMER: PW's dosage information is gathered from users and resources for educational purposes only. It is not a recommendation and should be verified with other sources for accuracy.

Interactions
Stimulants
MAOIs
Nitrous
PCP
Alcohol
Benzodiazepines
DXM
GHB
GBL
Ketamine
MXE
Tramadol
Grapefruit
MAOIs
Serotonin releasers
SSRIs
5-HTP
Summary sheet: Pethidine

Pethidine, known as meperidine in the United States (sold under the brand name Demerol), is a synthetic opioid analgesic used for the treatment of moderate to severe pain. Compared to traditional opioids such as morphine, pethidine was originially thought to be much safer and have less potential for abuse. It was later discovered that pethidine is significantly less safe than morphine and its metabolite norpethidine can be extremely toxic.

Chemistry

This chemistry section is incomplete.

You can help by adding to it.

Pethidine is an opioid in the phenylpiperidine class.

Pharmacology

Opioids exert their effects by binding to and activating the μ-opioid receptor. This occurs because opioids structurally mimic endogenous endorphins which are naturally found within the body and also work upon the μ-opioid receptor set. The way in which opioids structurally mimic these natural endorphins results in their euphoria, pain relief and anxiolytic effects. This is because endorphins are responsible for reducing pain, causing sleepiness, and feelings of pleasure. They can be released in response to pain, strenuous exercise, orgasm, or general excitement. The bioavailability of orally administered pethidine can vary from 50% to around 60%.

Compared to traditional opioids, pethidine has a very unique pharmacological profile. In addition to being an opioid, pethidine is also a muscarinic acetylcholine receptor antagonist. Pethidine is also a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor. Pethidine is a κ-opioid agonist and its metabolite norpethidine is also an extremely powerful serotonin reuptake inhibitor.[2]

Subjective effects

Disclaimer: The effects listed below cite the Subjective Effect Index (SEI), an open research literature based on anecdotal user reports and the personal analyses of PsychonautWiki contributors. As a result, they should be viewed with a healthy degree of skepticism.

It is also worth noting that these effects will not necessarily occur in a predictable or reliable manner, although higher doses are more liable to induce the full spectrum of effects. Likewise, adverse effects become increasingly likely with higher doses and may include addiction, severe injury, or death ☠. Many users note that they find pethidine just as, or more euphoric than oxycodone.[3]

Physical effects

The general sensation of pethidine can be described as one of euphoria, relaxation, anxiety suppression and pain relief.

Cognitive effects

Visual effects

  • Acuity suppression - Pethidine is a muscarinic acetylcholine receptor antagonist which may cause blurred vision at high doses.

Experience reports

There are currently no anecdotal reports which describe the effects of this compound within our experience index. Additional experience reports can be found here:

Toxicity and harm potential

Pethidine has a high toxicity relative to dose. As with all opioids, long-term effects can vary but can include diminished libido, apathy and memory loss. It is also [[Toxicity::potentially lethal when mixed with depressants like alcohol or benzodiazepines]] and generally has a wider range of substances which it is dangerous to combine with in comparison to other opioids.

One of pethdine's metabolites, norpethidine has little to no opioid action, but is known to cause seizures. Pethidine should not be taken during benzodiazepine withdrawals as this can potentially cause seizures. In 1984, Libby Zion, a teenager was brought to the emergency room due to a "flu-like" ailment. She was previously prescribed and taking phenelzine, a monoamine oxidase inhibitor, which in combination caused fatal serotonin syndrome.[4]

It is strongly recommended that one use harm reduction practices when using this drug.

Tolerance and addiction potential

As with other opioids, the chronic use of pethidine can be considered extremely addictive with a high potential for abuse and is capable of causing psychological dependence among certain users. When addiction has developed, cravings and withdrawal symptoms may occur if a person suddenly stops their usage.

Tolerance to many of the effects of pethidine develops with prolonged and repeated use. The rate at which this occurs develops at different rates for different effects, with tolerance to the constipation-inducing effects developing particularly slowly for instance. This results in users having to administer increasingly large doses to achieve the same effects. After that, it takes about 3 - 7 days for the tolerance to be reduced to half and 1 - 2 weeks to be back at baseline (in the absence of further consumption). Pethidine presents cross-tolerance with [[Cross-tolerance::all other opioids]], meaning that after the consumption of pethidine all opioids will have a reduced effect.

The risk of fatal opioid overdoses rise sharply after a period of cessation and relapse, largely because of reduced tolerance.[5] To account for this lack of tolerance, it is safer to only dose a fraction of one's usual dosage if relapsing. It has also been found that the environment one is in can play a role in opioid tolerance. In one scientific study, rats with the same history of heroin administration were significantly more likely to die after receiving their dose in an environment not associated with the drug in contrast to a familiar environment.[6]

Dangerous interactions

Although many drugs are safe on their own, they can become dangerous and even life-threatening when combined with other substances. The list below contains some common potentially dangerous combinations, but may not include all of them. Certain combinations may be safe in low doses of each but still increase the potential risk of death. Independent research should always be done to ensure that a combination of two or more substances is safe before consumption.

  • Depressants (1,4-Butanediol, 2m2b, alcohol, barbiturates, benzodiazepines, GHB/GBL, methaqualone) - This combination can result in dangerous or even fatal levels of respiratory depression. These substances potentiate the muscle relaxation, sedation and amnesia caused by one another and can lead to unexpected loss of consciousness at high doses. There is also an increased risk of vomiting during unconsciousness and death from the resulting suffocation. If this occurs, users should attempt to fall asleep in the recovery position or have a friend move them into it.
  • Dissociatives - This combination can result in an increased risk of vomiting during unconsciousness and death from the resulting suffocation. If this occurs, users should attempt to fall asleep in the recovery position or have a friend move them into it.
  • Stimulants - It is dangerous to combine pethidine, a depressant, with stimulants due to the risk of excessive intoxication. Stimulants decrease the sedative effect of pethidine, which is the main factor most people consider when determining their level of intoxication. Once the stimulant wears off, the effects of pethidine will be significantly increased, leading to intensified disinhibition as well as other effects. If combined, one should strictly limit themselves to only taking a certain amount of pethidine.
  • Psychedelics - Pethidine is well known to lower seizure threshold and psychedelics also cause occasional seizures.

Pethidine is known to cause serotonin syndrome at a significantly higher rate than other serotonergic opioids such as tramadol. Combinations with the following substances can cause dangerously high serotonin levels. Serotonin syndrome requires immediate medical attention and can be fatal if left untreated.

This legality section is a stub.

As such, it may contain incomplete or wrong information. You can help by expanding it.

  • United States: Pethidine is a Schedule II Controlled Substance.[8]
  • United Kingdom: Pethidine is a Class A, Schedule 2 drug in the United Kingdom.[9]

See also

References

  1. Risks of Combining Depressants - TripSit 
  2. Meperidine: A Critical Review | https://www.researchgate.net/publication/11575123_Meperidine_A_Critical_Review
  3. Subjective, Psychomotor, and Physiological Effects of Cumulative Doses of Opioid μ Agonists in Healthy Volunteers | http://jpet.aspetjournals.org/content/289/3/1454.long
  4. Serotonin Syndrome and the Libby Zion Affair | http://epmonthly.com/article/serotonin-syndrome-and-the-libby-zion-affair/
  5. Why Heroin Relapse Often Ends In Death - Lauren F Friedman (Business Insider) | http://www.businessinsider.com.au/philip-seymour-hoffman-overdose-2014-2
  6. Siegel, S., Hinson, R., Krank, M., & McCully, J. (1982). Heroin “overdose” death: contribution of drug-associated environmental cues. Science, 216(4544), 436–437. https://doi.org/10.1126/science.7200260
  7. Gillman, P. K. (2005). "Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity". British Journal of Anaesthesia. 95 (4): 434–441. doi:10.1093/bja/aei210Freely accessible. eISSN 1471-6771. ISSN 0007-0912. OCLC 01537271. PMID 16051647. 
  8. DEA Controlled Substances | https://www.deadiversion.usdoj.gov/schedules/orangebook/e_cs_sched.pdf
  9. UK Controlled Drugs | https://www.gov.uk/government/publications/controlled-drugs-list--2/list-of-most-commonly-encountered-drugs-currently-controlled-under-the-misuse-of-drugs-legislation